Identification of early and distinct glioblastoma response patterns treated by boron neutron capture therapy not predicted by standard radiographic assessment using functional diffusion map
نویسندگان
چکیده
BACKGROUND Radiologic response of brain tumors is traditionally assessed according to the Macdonald criteria 10 weeks from the start of therapy. Because glioblastoma (GB) responds in days rather than weeks after boron neutron capture therapy (BNCT) that is a form of tumor-selective particle radiation, it is inconvenient to use the Macdonald criteria to assess the therapeutic efficacy of BNCT by gadolinium-magnetic resonance imaging (Gd-MRI). Our study assessed the utility of functional diffusion map (fDM) for evaluating response patterns in GB treated by BNCT. METHODS The fDM is an image assessment using time-dependent changes of apparent diffusion coefficient (ADC) in tumors on a voxel-by-voxel approach. Other than time-dependent changes of ADC, fDM can automatically assess minimum/maximum ADC, Response Evaluation Criteria In Solid Tumors (RECIST), and the volume of enhanced lesions on Gd-MRI over time. We assessed 17 GB patients treated by BNCT using fDM. Additionally, in order to verify our results, we performed a histopathological examination using F98 rat glioma models. RESULTS Only the volume of tumor with decreased ADC by fDM at 2 days after BNCT was a good predictor for GB patients treated by BNCT (P value = 0.022 by log-rank test and 0.033 by wilcoxon test). In a histopathological examination, brain sections of F98 rat glioma models treated by BNCT showed cell swelling of both the nuclei and the cytoplasm compared with untreated rat glioma models. CONCLUSIONS The fDM could identify response patterns in BNCT-treated GB earlier than a standard radiographic assessment. Early detection of treatment failure can allow a change or supplementation before tumor progression and might lead to an improvement of GB patients' prognosis.
منابع مشابه
Investigation the potential of Boron neutron capture therapy (BNCT) to treat the lung cancer
Introduction: Boron neutron capture therapy (BNCT) is recommended to treat the glioblastoma tumor. It is well known that neuron beams are more effective treatment than photon beams to treat hypoxia tumors due to interaction of neutron with nucleus and production of heavy particles such as 7Li and alpha particle. In this study to evaluate the suitability of BNCT for treating of ...
متن کاملDesign and Simulation of Photoneutron Source by MCNPX Monte Carlo Code for Boron Neutron Capture Therapy
Introduction Electron linear accelerator (LINAC) can be used for neutron production in Boron Neutron Capture Therapy (BNCT). BNCT is an external radiotherapeutic method for the treatment of some cancers. In this study, Varian 2300 C/D LINAC was simulated as an electron accelerator-based photoneutron source to provide a suitable neutron flux for BNCT. Materials and Methods Photoneutron sources w...
متن کاملAn investigation into the potential applicability of gel dosimeters for dosimetry in boron neutron capture therapy
Background: The aim of this work was to establish how well gel dosimeters performed, as substitutes for brain tissue compared with standard phantom materials such as water, polymethyl-methacrylate (or PMMA), A150 plastic and TE- liquid phantom material for dosimetry of neutron beams in boron neutron capture therapy. Materials and Methods: Thermal neutron fluence, photon dose and epithermal neu...
متن کامل10B Concentration, Phantom Size and Tumor Location Dependent Dose Enhancement and Neutron Spectra in Boron Neutron Capture Therapy
Background: The amount of average dose enhancement in tumor loaded with 10B may vary due to various factors in boron neutron capture therapy.Objective: This study aims to evaluate dose enhancement in tumor loaded with 10B under influence of various factors and investigate the dependence of this dose enhancement on neutron spectra changes.Material and Methods: In this simulation stud...
متن کاملDosimetry Impact of Boron and Its Carriers Structure at Boron Neutron Capture Therapy of a Brain Tumor; A Sim- ulation Study
Introduction: Boron neutron capture therapy (BNCT) is a method of cancer treatment and potentially, two borono-L-phenylalanine (BPA) and sodium borocaptate (BSH) are used in BNCT as common boron carriers. Some previous studies have shown that the dose rate is directly related to boron concentration in the tissue. This study aimed to simulate the structure of boron carriers and brain tumor compo...
متن کامل